Simple bets to elicit private signals

Yan Xu

Erasmus University Rotterdam and Tinbergen Institute

Aurelien Baillon

Erasmus University Rotterdam and Tinbergen Institute

June 2019

Task: elicit private information from crowds

Task: elicit private information from crowds

Why?

- gather knowledge and guide decision-making
 - opinions and attitudes from social-economic surveys
 - tastes and experiences on reviews sites like Rotten Tomatoes/Yelp/TripAdvisor ...
 - evaluations and recognitions on crowdsourcing platforms

Task: elicit private information from crowds

Why?

- gather knowledge and guide decision-making
 - opinions and attitudes from social-economic surveys
 - tastes and experiences on reviews sites like Rotten Tomatoes/Yelp/TripAdvisor ...
 - evaluations and recognitions on crowdsourcing platforms

Goal:

- elicit high-quality information from crowds
 - participation
 - informativeness (more efforts)
 - truth-telling

How?

design payment schemes to **align incentives** with participation, more efforts and truth-telling.

How?

design payment schemes to **align incentives** with participation, more efforts and truth-telling.

Two categories of elicitation methods:

- single DM setting with the verifiable truth: condition payment with an exogenous event/item
 - proper scoring rule: realization of the underlying event
 - BDM: allocation of the underlying item
- game setting with the unverifiable truth: condition payment with an surrogate event/item
 - peer prediction: peers' reports
 - Bayesian truth serum: peers' reports and predictions
 - Bayesian market: transaction of an "opinion" asset

Challenge:

- practice: complicated and non-transparent
- theory: common prior, homogeneous and risk neutral agents

Challenge:

- practice: complicated and non-transparent
- theory: common prior, homogeneous and risk neutral agents

This paper:

- two mechanisms: top-flop and target betting
- In the single DM setting with verifiable truth, truth-telling is incentive compatible.
- In the game setting with unverifiable truth, truth-telling can be an equilibrium w/o common prior, homogeneity and risk neutral assumptions.

examples of top-flop betting and target betting

An example of top-flop betting

- attend the premiere of a new "Avengers X" movie
- choose one from two bets
 - 1. (top bet): "Avengers X" will have a **higher** rotten tomato score than another random superhero movie.
 - 2. (flop bet): "Avengers X" will have a **lower** rotten tomato score than another random superhero movie.
- get a prize if your bet wins

Intuitive results for top-flop betting

Will you participate in this bet?

Which bet will you choose?

Intuitive results for top-flop betting

Will you participate in this bet?

Which bet will you choose?

- if you like "Avengers X"
- if you do not like "Avengers X"

Intuitive results for top-flop betting

Will you participate in this bet?

Which bet will you choose?

- if you like "Avengers X"
- if you do not like "Avengers X"

With top-flop betting, respondents will participate and reveal private signals through betting choices.

- positive signal \Rightarrow bet "top"
- negative signal \Rightarrow bet "flop"

An example of target betting

- after watching a new "Avengers X" movie
- choose one from two bets to win a prize
 - 1. bet the new "Avengers X" movie will have a rotten tomato score **higher** than 0.8.
 - 2. bet another random superhero movie will have a rotten tomato score **higher** than 0.8.

An example of target betting

- after watching a new "Avengers X" movie
- choose one from two bets to win a prize
 - 1. bet the new "Avengers X" movie will have a rotten tomato score **higher** than 0.8.
 - 2. bet another random superhero movie will have a rotten tomato score **higher** than 0.8.

With target betting, respondents will participate and reveal private signals through betting choices.

- positive signal \Rightarrow bet the new "Avengers X" movie
- negative signal \Rightarrow bet another random superhero movie

When does top-flop and target betting (not) work?

Set-ups

- a collection of items $\mathcal{K} = \{1, 2, ..., K\}$
- each $k \in \mathcal{K}$ has a score Y_k (e.g. RT score, box office)
- $\forall k \in \mathcal{K}$, the bettor has a prior $H_k(\cdot)$
- for item *i*, the bettor has a private signal $t_i \in \{1, 0\}$
- the center randomly chooses an item $j \neq i$ for the bettor and formulates top flop bets or target-y bets
 - top bet: $y_i > y_j$ bet on item *i*: $y_i > y$
 - flop bet: $y_i < y_j$

- bet on item $j: y_j > y$
- the prize for a winning bet is $\pi \succ 0$

Assumptions on signal technologies

Assumption 1

$$Pr(t_i = 1 | Y_i > \delta) > Pr(t_i = 1 | Y_j > \delta)$$
 for all $j \in \mathcal{K} \setminus \{i\}$.

Assumptions on signal technologies

Assumption 1 $Pr(t_i = 1 | Y_i > \delta) > Pr(t_i = 1 | Y_j > \delta)$ for all $j \in \mathcal{K} \setminus \{i\}$.

• interpretation: signals are assorted

	signal	news
<i>i</i> : Avengers	$t_i = 1$	$Y_i > \delta$
j: Spiderman	Ø	$Y_j > \delta$

Assumptions on signal technologies

Assumption 1 $Pr(t_i = 1 | Y_i > \delta) > Pr(t_i = 1 | Y_j > \delta)$ for all $j \in \mathcal{K} \setminus \{i\}$.

• interpretation: signals are assorted

	signal	news
<i>i</i> : Avengers	$t_i = 1$	$Y_i > \delta$
j: Spiderman	Ø	$Y_j > \delta$

- counter-example: irrelevant Y_i and Y_j
 - $Y_i > \delta$: movie *i*'s director is taller than 175cm
 - $Y_j > \delta$: movie j's director is taller than 175cm

bet on/against movie *i*'s director is taller than movie *j*'s?

• in practice: formulate bets on signal-assorted scores

When Y_j is uninformative: $Pr(t_i = 1 | Y_j) = Pr(t_i = 1)$

Assumption 1'

 $Pr(t_i = 1 | Y_i = y_i)$ is strictly increasing in y_i

When Y_j is uninformative: $Pr(t_i = 1 | Y_j) = Pr(t_i = 1)$

Assumption 1'

 $Pr(t_i = 1 | Y_i = y_i)$ is strictly increasing in y_i

- interpretation: higher score \Rightarrow more likely to like *i*
- pro: flexible signal technologies

When Y_j is uninformative: $Pr(t_i = 1 | Y_j) = Pr(t_i = 1)$

Assumption 1' $Pr(t_i = 1 | Y_i = y_i)$ is strictly increasing in y_i

- interpretation: higher score \Rightarrow more likely to like *i*
- pro: flexible signal technologies

When Y_j is uninformative: $Pr(t_i = 1 | Y_j) = Pr(t_i = 1)$

Assumption 1' $Pr(t_i = 1 | Y_i = y_i)$ is strictly increasing in y_i

- interpretation: higher score \Rightarrow more likely to like *i*
- pro: flexible signal technologies

When Y_j is uninformative: $Pr(t_i = 1 | Y_j) = Pr(t_i = 1)$

Assumption 1' $Pr(t_i = 1 | Y_i = y_i)$ is strictly increasing in y_i

- interpretation: higher score \Rightarrow more likely to like *i*
- pro: flexible signal technologies

Assumption 2

Bettor has the same non-degenerate prior $H(\cdot)$ about Y_k for all $k \in \mathcal{K}$

- interpretation: items in \mathcal{K} are "informationally non-differentiable" ex-ante
- counter-example: item i and j from different collections bet on/against a blockbuster vs. a random independent movie
- in practice: select similar items for the collection

Assumptions on independence and preference

Assumption 3

For any $i, j \in \mathcal{K}$, Y_i , Y_j are independent and conditionally independent given signals.

- necessary for top-flop betting, but not target betting
- relaxation requires specifications of priors and signal technologies.

Assumption 4

Bettors are probabilistically sophisticated.

- Bettors choose the bet that has the highest chance to get π
- Bettors can be risk averse, non-expected utility,...

A single bettor: betting on exogenous scores

Theorem 1

Theorem 1

Theorem 1

Theorem 1

Theorem 1

Under assumption 1 to 4, a bettor will participate in the top-flop betting for any $j \in \mathcal{K} \setminus \{i\}$ and will be truthful.

12

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Under assumption 1,2 and 4, a bettor will participate in the target-y betting for any $j \in \mathcal{K} \setminus \{i\}$ and will be truthful.

Bet *i*: $P(Y_i(\omega) > y \mid t_1) > Bet j$: $P(Y_i(\omega) > y \mid t_1)$ $F(\cdot)$ 1 $H_i(y) = H_j(y)$ $F_i(\cdot | t_i = 1)$ \succ_{SD} $F_i(y|t_i=1)$ $F_i(\cdot | t_i = 1)$ $F_i(y|t_i=1)$

Game setting: betting on endogenous scores

Top-flop in a game setting

- agents receive signals and simultaneously choose between
 - top bet: $y_i > y_j$
 - flop bet: $y_i < y_j$
- y_i is the proportion of top choices when item *i* is involved

Top-flop in a game setting

- agents receive signals and simultaneously choose between
 - top bet: $y_i > y_j$
 - flop bet: $y_i < y_j$
- y_i is the proportion of top choices when item *i* is involved

Assumption 5

It is common knowledge that Assumption 1-4 hold for all agents.

Top-flop in a game setting

- agents receive signals and simultaneously choose between
 - top bet: y_i > y_j
 - flop bet: $y_i < y_j$
- y_i is the proportion of top choices when item *i* is involved

Assumption 5

It is common knowledge that Assumption 1-4 hold for all agents.

- common interpretation:
- Agents may think everyone is different in priors, signal technologies, and thus posteriors.
- Agents agree that the FOSD between posteriors and priors holds for all.

Truth-telling equilibrium for a top-flop game?

Without common prior, BNE concept does not apply.

Truth-telling equilibrium for a top-flop game?

Without common prior, BNE concept does not apply.

Alternative equilibrium concepts: Nash Equilibrium

- transform the betting game with incomplete information to a strategic betting game with imperfect information
- redefined preferences are over lotteries, and are type-dependent and individual-specific
- verify that truth-telling is a strict pure strategy Nash equilibrium

A top-flop betting game with 4 agents

- 4 agents participate the game: $\mathcal{N} \equiv \{A, B, C, D\}$
- A, B receive signals from item i and C, D receive signals from item j: (tⁱ_A, tⁱ_B, t^j_C, t^j_D) ∈ Π_{n∈N}{1,0}
- For any agent $n \in \mathcal{N}$, his strategy profile is $a_n = (a_n^0, a_n^1)$.
- There are 4 pure strategy profiles: truth-telling (0,1); lying (1,0); always top (1,1) and always flop (0,0).
- Payoffs for two bets are:
 - top bet: receive π if $(a_B, a_C) = (1, 0)$, nothing otherwise
 - flop bet: receive π if $(a_B, a_C) = (0, 1)$, nothing otherwise
- Check that truth-telling a = (a⁰, a¹) = (0, 1) is a strict pure strategy Nash equilibrium.

Truth-telling as a Nash equilibrium

Suppose A's signal is 1, payments for reporting 1 and 0 are:

signal	action	Тор	Flop	posterior
(t_B^i, t_C^j)	(a_B, a_C)	$a_A^1 = 1$	$a_A^1 = 0$	$P_A(t_B^i, t_C^j \mid t_A^i)$
(1,0)	(1,0)	π	0	$P_A(1,0 \mid 1)$
(0,1)	(0,1)	0	π	$P_A(0,1 \mid 1)$
(0,0)	(0,0)	0	0	$P_A(0, 0 \mid 1)$
(1,1)	(1,1)	0	0	$P_A(1,1\mid 1)$

Truth-telling as a Nash equilibrium

Suppose A's signal is 1, payments for reporting 1 and 0 are:

signal	action	Тор	Flop	posterior
(t_B^i, t_C^j)	(a_B, a_C)	$a_A^1 = 1$	$a_A^1 = 0$	$P_A(t_B^i, t_C^j \mid t_A^i)$
(1,0)	(1,0)	π	0	$P_{A}(1, 0 \mid 1)$
(0,1)	(0,1)	0	π	$P_A(0,1 \mid 1)$
(0,0)	(0,0)	0	0	$P_A(0, 0 \mid 1)$
(1,1)	(1,1)	0	0	$P_A(1,1\mid 1)$

- Under assumption 1-3 with $y_i = t_B^i$ and $y_j = t_C^j$, $P_A(t_B^i = 1, t_C^j = 0 | t_A^i = 1) > P_A(t_B^i = 0, t_C^j = 1 | t_A^i = 1)$
- If agent A's type is 0, he will bet flop.
- Truth-telling is a strict pure strategy Nash equilibrium.

Top-flop and target betting can elicit informative and unverifiable truth

- simple and transparent
- relax heavy assumptions

Thank you for your attention!

Appendix

Implication for incentivizing efforts

- what if it is costly to obtain private signals?
- more efforts \Rightarrow more precise signals

Implication for incentivizing efforts

- what if it is costly to obtain private signals?
- more efforts \Rightarrow more precise signals

Implication for incentivizing efforts

- what if it is costly to obtain private signals?
- more efforts \Rightarrow more precise signals

References

- single DM setting with verifiable truth
 - proper scoring rule: Winkler 69; Schotter & Trevino 14.
 - BDM: Becker et al. 64; Karni 09.

- game setting with unverifiable truth
 - peer prediction: Miller et al. 05; Jurca & Faltings 06, 09; Gao et al. 14;...
 - Bayesian truth serum: Prelec 04; Weaver & Prelec 13; Witkowski & Parkes 12; Radanovic & Faltings 13, 14,...
 - Bayesian market: Baillon 17.