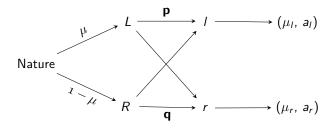
Revealed preferences over experts and quacks and failures of contingent reasoning

Yan Xu

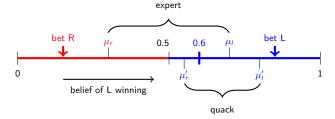

University of Vienna

July, 2022

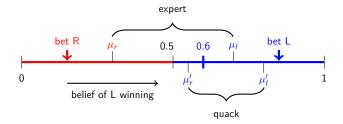
Motivation: how do people choose and evaluate tests?

- choice set: investment advisers; doctors; medical tests ...
- decision time: before receiving a signal (advice, diagnosis)

Figure: A DM's problem of choosing a test (p, q)



- Quacks vs. experts: useless vs. useful tests
- Can people distinguish between quacks and experts?
- What are the mechanisms of choosing quacks?


When a test (p, q) is an expert or a quack?

Task: bet state of the world (L or R) to win a prize π

- Among the previous 100 patients, L occurred 60 times and R occurred 40 times.
- Also send the patient to take a test, get a diagnosis, and then make the bet.
- A test's performance in giving correct diagnoses is:
 - Among 60 patients with tumor, it diagnosed 42 times correctly (70%)
 - Among 40 patients without tumor, it diagnosed 18 times correctly (45%)
- How much the patient should pay to get a diagnosis from this test? What about an alternative test whose performance is (65%, 55%)?

When a test (p, q) is a quack or an expert for a rational Bayesian DM?

Proof: Bayesian posteriors are mean preserving spreads of the prior:

$$\mu = \mathbb{E}_{s}\mathbb{P}(L \mid s) = \mu_{l}^{Bayes}s_{l} + \mu_{r}^{Bayes}s_{r}$$

A rational Bayesian DM's ex-ante winning probability of π is¹:

$$v(p,q;\mu) = \begin{cases} \mu_l^{Bayes} s_l + \mu_r^{Bayes} s_r = \mu, \text{ for quacks} \\ \mu_l^{Bayes} s_l + (1 - \mu_r^{Bayes}) s_r > \mu, \text{ for experts} \end{cases}$$

 $^1 {\rm under}$ structural assumptions $\mu \geq 1/2$ and $p \geq 1-q$

Setup: states, signals, and tests

- Two states $\omega \in \{L, R\}$ and two signals $s \in \{l, r\}$
- The action space is binary: u(a, ω) = πI_{a=ω}.
 optimal action is to bet the state the DM believes ≥ 1/2.
- The prior $\mu \equiv \mathbb{P}(\omega = L)$
- Assumption: the DM wants to maximize the chance to win the prize.
- Each test is characterized by an accuracy pair (p, q).
 p ≡ P(s = l | ω = L) and q ≡ P(s = r | ω = R)
- Each test induces a posterior pair (μ_r, μ_l) . $-\mu_l(p, q; \mu) \equiv \mu(\omega = L \mid s = l)$ and $\mu_r \equiv \mu(\omega = L \mid s = r)$
- Decision scenarios: choose the most useful radiology exam, hypothesis test, statistical experiment, etc.

Mechanisms

A DM fails to distinguish between quacks and experts because he:

- 1. fails to **update beliefs** as a Bayesian: (μ_I, μ_r)
- 2. chooses **sub-optimal actions** given her beliefs: (a_l, a_r)
- 3. has intrinsic preference over certain types of tests: skew(p,q)
- 4. lacks contingent reasoning in the implication of a test on actions

Intuition for contingent reasoning: a test is useful in providing an opportunity to contingent actions.

- quack: induced posteriors support the same optimal action (pooling): $a^*(l) = a^*(r)$
- expert: induced posteriors support different optimal actions (separating): a^{*}(l) ≠ a^{*}(r)

This paper: elicits preferences over tests and identify different channels

Experimental design

Indifference curves of $v(p, q; \mu)$ for a rational Bayesian agent

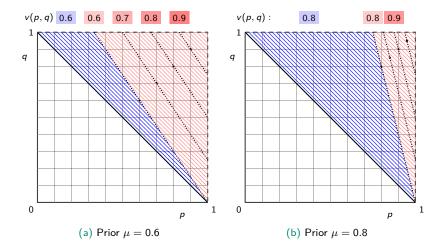
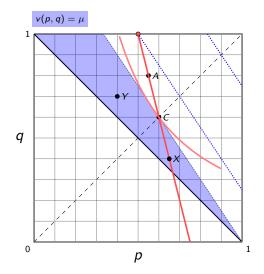
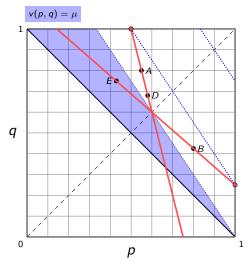
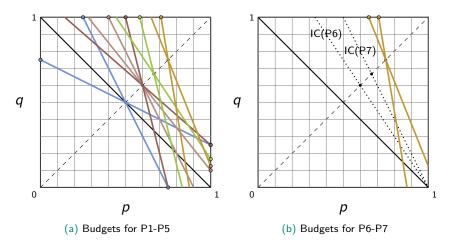



Figure: Value of test $v(p, q; \mu)$ for small and big priors


 $v(p,q;\mu)$: expected winning probability of the prize for prior μ and test (p,q)

Eliciting preference over tests: trade-offs between p and q


- Alternative interpretation: trade off Type I and Type II errors: 1 p vs. 1 q
- The receiver operating characteristic (ROC) curve: p vs. 1-q

Eliciting preference over tests: paired linear budgets

- Budget pair: A and B are equally useful expert tests
- Identify intrinsic preference: (A, B) vs. (E, A)
- Measure the extent of intrinsic pref: (A, B) vs. $(D, B) \Rightarrow p$ -skewness

Budgets for 14 rounds of tasks

Experimental task: bet state L or state R

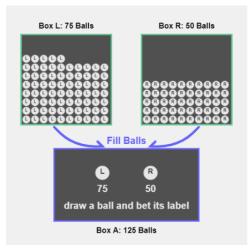
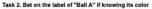
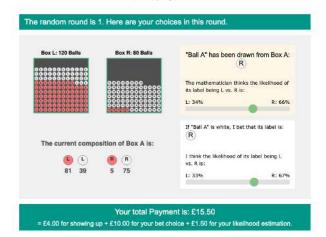



Figure: One ball (called "Ball A") will be drawn from Box A. The task is to bet its label to be either L or R. Correct bet wins a prize of £10; otherwise the payoff is 0.

Experimental task: choose a test on a budget through a coloring task Round 1 out of 14


Task 1. Choose color compositons for Box L and Box R

bet that its label is:		I bet that its label is:	
C B		L	R
think the likelihood of its label being L	vs. R is:	I think the likelihood	of its label being L vs. R is:
: 86%	R: 14%	L: 33%	R: 675

Random pay one out of fourteen rounds

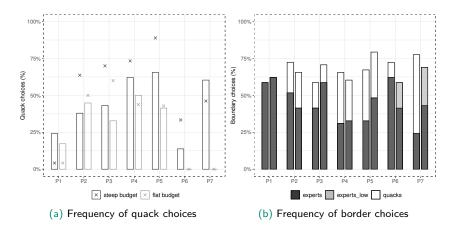
Your payment

Please share us thoughts about how you make the color and the bet choices:

Confirm

Identifying different channels and experimental procedures

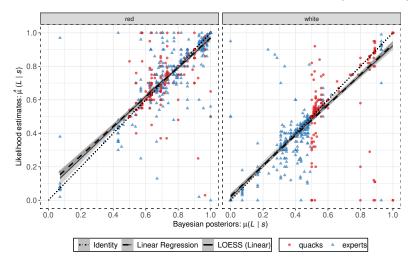
Identifications:


- belief-updating bias: reported posterior estimate for each signal
- best-responding bias: bet choices after each signal
- intrinsic preferences: budget pairs
- (unobservable) contingent reasoning: comments and decision rules

Procedures:

- recruit 64 (58) students on Prolific
- average payoff £11.25
- average duration 45 minutes, 18 minutes on instructions and quiz
- procedures and choices are comparable to the pilot session in the lab

Do people choose quacks?


Experimental results: failure to distinguish and evaluate quack vs. expert tests

- Do people choose quacks? Yes at aggregate, round, and individual level
- What kind of tests do they choose? tests on the border
 ⇒ the most useful experts and the most distant quacks

Channel 1: are quack choices explained by belief updating biases?

• Result 1.1: reported posteriors are close to Bayesian ones (93% bonus)

- Result 1.2: small updating biases cannot explain quack choices
- Both results are robust: OLS, IV, Grether structure regressions

Channel 2: are quack choices explained by sub-optimal actions?

Table: Number of bet choices inconsistent with the reported and Bayesian beliefs

	Under st	ated belief	Under Bayesian belief		
	quack	expert	quack	expert	
inconsistent bets	26 1.6%	29 1.8%	35 2.2%	17 1.0%	

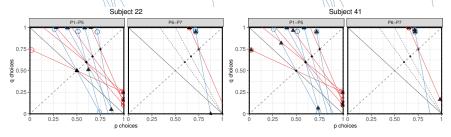
- Result 2.1: subjects choose the optimal bets that best-respond to beliefs
- Result 2.2: small best-responding biases cannot explain quack choices

Channel 3: are quack choices explained by intrinsic preferences?

If DM cares about certain test attributes + quack tests are more likely to have the attributes \Rightarrow many quacks choices

 \Rightarrow construct attributes measures and examine their distributions/predictability

- absolute asymmetry measures:
 - test-specific |p q|, |(p, q) pivot|
 - posterior-specific: $\mathbb{P}(red) = (\mu \mu_l)/(\mu_l \mu_r)$
- relative asymmetry measures:
 - test-specific q/p, (q pivot)/(pivot p),
 - posterior-specific: $(\mu_l \mu)/(\mu \mu_r)$
- All of them are similarly distributed for experts and quack tests
- None of them predicts quack choices with Probit regressions


Result 3: quacks choices cannot be justified by intrinsic preferences

What happened?

Channel 4: are quack choices explained by the lack of contingent reasoning? Popular decision rules describing how subjects chose coloring compositions:

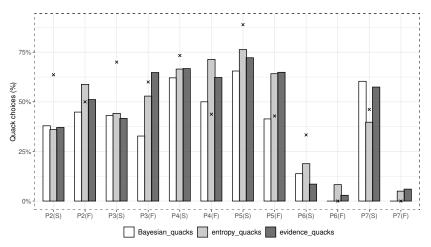

- Entropy-reducing rule: "I made sure that wherever I could, there was an option that red or white would 100% be label R or L"
- Evidence-separating rule: "The colour choices are based on the difference in red and white between L and R, you make the gap as big as possible so its easier to choose L or R from red and white."
- **Signal-separating rule**: "Try to favor one colour, increasing the chances for one colour to have a high change to belong to one of the boxes"

Figure: "I third to somewhat increase the difference between two boxes"

Predicting the quack choice rate for each decision rule

Figure: The histogram of predicted quack choice rate for budgets in P2-P7

- two decision rules explain the choice of border tests
 - the most useful expert or most distant quack \Rightarrow quack choices are by-products
- simple decision rules ⇒ failure of contingent reasoning

Conclusions

- people fail to distinguish between experts and quacks
 - not because of updating bias, sub-optimal actions, or intrinsic preferences
- people over-pay for quacks but accurately pay for experts
 - because they use entropy-reducing and evidence-separating decision rules \Rightarrow border tests
- people lack the contingent reasoning in choosing and evaluating tests

Contributions to the literature

- preference over information structures:
 - non-instrumental information structure:
 - timing and resolution procedure: Falk and Zimmermann (2016); Ganguly and Tasoff (2017), and Nielsen (2018)
 - skewness: Masatlioglu, Orhun, and Raymond (2017)
 - instrumentally valuable informaiton structures:
 - updating bias: Ambuehl and Li (2018)
 - prior-confirming or contradicting bias: Charness, Oprea, and Yuksel (2018); Montanari and Nunnari (2019)
 - This paper: unified framework for information structures, identifications for different channels, focus on reasoning bias
- failure of contingent reasoning:
 - violation of sure-thing principle and failure to choose dominant strategies

 Tversky and Shafir (1992); Cason and Plott (2014); Harstad (2000);
 Esponda and Vespa (2014) ...
 - source of failure: not partition states (or others' action space) b/w those where DM's choice does or does not matter
 - This paper: not partition test space b/w those with which DM's optimal strategies are pooling or separating across signals.
- a tool to elicit test/source preference explicitly: rational inattention (implicitly)

Extensions and discussions

On contingent reasoning bias:

- non-binary signals and states: decision problem is not responsive
- asymmetric prize: change the threshold (elicitable)
- dynamic setting: the optimal way to acquire information at time 0?
 e.g., lottery (40, A₁; 15, A₂; 10, A₃) vs. 20, what is the optimal way to pay ε and ask "Is the realized state A_i or not?"
- strategic interactions: Bayesian persuasion, communication games

More questions than answers:

- How to model the failure of contingent reasoning?
- How to structure the decision rules in choosing tests?
- de-biasing: standard methods have a bound, new methods on reasoning?

Some discussions related to physician skills and credence goods

Contingent reasoning is a component in physicians' diagnostic skills:

- Variations in health expenditures are most driven by physicians' practice styles and diagnostic skills (Finkelstein et al., 2016, Cutler et al., 2019)
- Many evidence on over-testing, over-medication, and useless procedures
- Two major mistakes in diagnoses/treatments: overuse and misuse
 - C-section in childbirth: Currie et al.,2017
 - CT for pulmonary embolism(PE): Abaluck et al.,2016, Chan et al.,2021
- Empirically, does contingent reasoning bias cause overuse and misuse?
- If so, how to teach physicians to reason and make better decisions?

 $Credence \ goods: \ private \ information \ + \ mis-aligned \ interests$

- Framework: Bayesian persuasion + private info and communication
- A doctor prefers R (regardless of states); a patient wants to match state
- The doctor commits to a test, learns the diagnosis (signal), and then communicates with the patient.
- How communication protocols affect persuasion and info transmission?

Thanks for your patience!

Comments are welcome: yan.xu@univie.ac.at²

 $^{^2 {\}rm The}$ working paper and slides can be found in my personal website: https://yanxu.me/

Appendix

What are the consequences of choosing quacks and non-optimal experts?

	mean	sd	pt5	pt25	pt50	pt75	pt95
Pool	5.6%	0.074	0%	0%	3.3%	8.3%	21.5%
Quack Expert	11.6% 2.3%	0.077 0.047	3.3% 0%	6.7% 0%	8.3% 0%	16.7% 2.5%	24.0% 12.7%

Table: Relative improvements in winning probabilities if choosing optimally

Alternative definitions of expert and individual quack tests

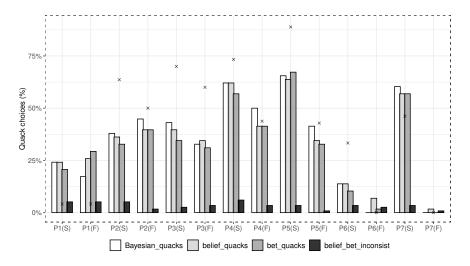


Figure: The histogram of quack choices under alternative definitions.

	Dependent: D(expert choice)				Dependent: D(top choice)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Constant	-1.83	-45.74**	-3.46	0.13*	-5.69*	-22.66**	0.56
	(2.36)	(8.43)	(6.13)	(0.06)	(2.35)	(7.82)	(5.17
Slope	0.84	10.60**	-1.12	()	ì.40* [*]	5.44* [*]	-0.11
·	(0.52)	(1.91)	(1.15)		(0.51)	(1.75)	(0.97
Size	-1.33.	-14.88**	`0.97 [´]		-2.27*´*	-7.81*´*	-0.19
	(0.72)	(2.66)	(1.51)		(0.71)	(2.44)	(1.27
Quack chance	-3.72*´*	-3.52*´*	-2.72*´*		-1.59*´*	-1.00*´*	-1.18*
	(0.52)	(0.38)	(0.69)		(0.48)	(0.30)	(0.58)
Steep	.89 [∗]	2.48* [*]	Ò.85**		ì.34* [*]	ì.71* [*]	1.01*
	(0.41)	(0.47)	(0.29)		(0.41)	(0.45)	(0.29
Pivot point	9.32·	104.96**	`7.74 [´]		13.53*´*	50.36 ^{**}	-0.98
	(4.99)	(18.57)	(11.79)		(4.88)	(17.05)	(9.85)
D(Top choice)	()	· · /	()	0.44**	()	()	
· · /				(0.10)			
Top: Δ (entropy)	-5.28*			()	-4.50*		
1 (15)	(2.22)				(2.10)		
Bottom: Δ (entropy)	-3.44				-4.38*		
(13)	(2.19)				(2.17)		
Top: $ p + q - 1 $	()	-25.89**				-11.03**	
1 1 1		(4.54)				(4.10)	
Bottom: $ p + q - 1 $		-13.58**				-7.42**	
		(2.87)				(2.60)	
Top: ℙ(red)		()	-2.30			()	2.03
· 、 /			(3.88)				(3.20)
Bottom: $\mathbb{P}(white)$			12.55**				2.27
((2.89)				(2.66)
Observations	696	696	696	696	696	696	696

26

Predicting the quack choice rate for each decision rule

Demographics and quack choices

(1) 0.23 (0.16) 0.004 (0.01)	(2) 0.20 (0.19)	(3) 0.38***	(4)	(5)	(6)
(0.16) 0.004			0.14		
		(0.05)	(0.14)	0.03 (0.12)	0.24 (0.18)
0.04 (0.04)					
0.001 (0.02)					
0.02 (0.04)					
. ,		-0.04** (0.02)	-0.03* (0.02)	-0.03** (0.02)	-0.03** (0.02)
		-0.02	()	()	(0.02)
		0.02			
	0.04 ^{**} (0.02)				0.04 ^{**} (0.01)
	-0.04		-0.04	()	-0.04 (0.03)
	0.02		0.03*	0.03*	0.02 (0.01)
	0.06**		0.05**	0.04* [*]	0.06** (0.02)
	-0.02		(1.1.2)	()	-0.02 (0.03)
	-0.02 (0.02)				(0.00)
58	58	58	58	58	58
-0.06	0.15	0.04	0.21	0.19	0.21
	ò.00í (0.02) 0.02 (0.04)	0.001 (0.02) 0.02 (0.04)	0.001 -0.04** (0.02) -0.02 (0.02) -0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0.02 (0.03) 0.02 (0.03) -0.02 (0.03) -0.02 (0.02) (0.03) -0.02 (0.02) 58 58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Dependent variable: individual coefficient 1 $ \hat{lpha_1}$					
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.03 (0.25)	0.11 (0.38)	0.20** (0.09)	0.12 (0.20)	0.22 (0.19)	0.07 (0.21)
Age	-0.004	(***)	()			(*)
Female	0.24*** (0.07)			0.21*** (0.05)	0.21*** (0.05)	0.21 ^{***} (0.05)
SAT	0.004 (0.03)			(0.00)	(0.00)	(0.00)
STEM	0.06 (0.07)					
CRT score	()		-0.09 ^{***} (0.03)	-0.08 ^{***} (0.03)	-0.07*** (0.03)	-0.09 ^{***} (0.03)
Wason score			-0.04 (0.03)	(0.00)	(0.00)	(0.00)
Logic score			0.06 (0.04)			0.04 (0.03)
Risk aversion		0.03 (0.03)	(0.01)			(0.00)
Contingent		0.01 (0.06)				
Stubborn		-0.02 (0.03)				
Information		0.03 (0.05)		0.06 (0.04)		0.05 (0.04)
Perspective		-0.07 (0.05)		-0.10** (0.04)	-0.08** (0.04)	-0.09** (0.04)
Analytical		0.02 (0.05)		0.06 (0.04)	0.07 ^{**} (0.04)	0.06 (0.04)
Observations	58	58	58	58	58	58
Adjusted R ²	0.17	-0.06	0.13	0.33	0.31	0.33
Adjusted R ² Note:						.05;

Demographics and individual belief updating biases